Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation

نویسندگان

  • Jens Noth
  • Ramona Kositzki
  • Kathrin Klein
  • Martin Winkler
  • Michael Haumann
  • Thomas Happe
چکیده

Nature has developed an impressive repertoire of metal-based enzymes that perform complex chemical reactions under moderate conditions. Catalysts that produce molecular hydrogen (H2) are particularly promising for renewable energy applications. Unfortunately, natural and chemical H2-catalysts are often irreversibly degraded by molecular oxygen (O2). Here we present a straightforward procedure based on freeze-drying (lyophilization), that turns [FeFe]-hydrogenases, which are excellent H2-producers, but typically extremely O2-sensitive in solution, into enzymes that are fully resistant against O2. Complete dryness protects and conserves both, the [FeFe]-hydrogenase proteins and their inorganic active-site cofactor (H-cluster), when exposed to 100% O2 for days. The full H2-formation capacity is restored after solvation of the lyophilized enzymes. However, even minimal moisturizing re-establishes O2-sensitivity. The dry [FeFe]-hydrogenase material is superior also for advanced spectroscopic investigations on the H-cluster reaction mechanism. Our method provides a convenient way for long-term storage and impacts on potential biotechnological hydrogen production applications of hydrogenase enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

BACKGROUND FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. RESULTS We have developed a synthetic metabolic pathway in E. coli that links Fe...

متن کامل

Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.

Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert,...

متن کامل

How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms.

Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from...

متن کامل

Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii.

Hydrogenases catalyze the reversible oxidation of molecular hydrogen. The active site of the [FeFe] hydrogenases (H-cluster) contains a catalytically active binuclear subcluster ([2Fe](H)) connected to a "cubane" [4Fe4S](H) subcluster. Here we present an IR spectroelectrochemical study of the [FeFe] hydrogenase HydA1 isolated from the green alga Chlamydomonas reinhardtii. The enzyme shows IR ba...

متن کامل

The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster.

Nature is a valuable source of inspiration in the design of catalysts, and various approaches are used to elucidate the mechanism of hydrogenases, the enzymes that oxidize or produce H2. In FeFe hydrogenases, H2 oxidation occurs at the H-cluster, and catalysis involves H2 binding on the vacant coordination site of an iron centre. Here, we show that the reversible oxidative inactivation of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015